Semi-Supervised Boosting for Multi-Class Classification
نویسندگان
چکیده
Most semi-supervised learning algorithms have been designed for binary classification, and are extended to multi-class classification by approaches such as one-against-the-rest. The main shortcoming of these approaches is that they are unable to exploit the fact that each example is only assigned to one class. Additional problems with extending semisupervised binary classifiers to multi-class problems include imbalanced classification and different output scales of different binary classifiers. We propose a semi-supervised boosting framework, termed Multi-Class Semi-Supervised Boosting (MCSSB), that directly solves the semisupervised multi-class learning problem. Compared to the existing semisupervised boosting methods, the proposed framework is advantageous in that it exploits both classification confidence and similarities among examples when deciding the pseudo-labels for unlabeled examples. Empirical study with a number of UCI datasets shows that the proposed MCSSB algorithm performs better than the state-of-the-art boosting algorithms for semi-supervised learning.
منابع مشابه
Semi-Supervised Structure Learning
Discriminative learning framework is one of the very successful fields of machine learning. The methods of this paradigm, such as Boosting, and Support Vector Machines have significantly advanced the state-of-the-art for classification by improving the accuracy and by increasing the applicability of machine learning methods. Recently there has been growing interest to generalize discrimative le...
متن کاملBoosted multi-class semi-supervised learning for human action recognition
Human action recognition is a challenging task due to significant intra-class variations, occlusion, and background clutter. Most of the existing work use the action models based on statistic learning algorithms for classification. To achieve good performance on recognition, a large amount of the labeled samples are therefore required to train the sophisticated action models. However, collectin...
متن کاملRobust Multi-View Boosting with Priors
Many learning tasks for computer vision problems can be described by multiple views or multiple features. These views can be exploited in order to learn from unlabeled data, a.k.a. “multi-view learning”. In these methods, usually the classifiers iteratively label each other a subset of the unlabeled data and ignore the rest. In this work, we propose a new multi-view boosting algorithm that, unl...
متن کاملMulticlass Semi-supervised Boosting Using Different Distance Metrics
The goal of this thesis project is to build an effective multiclass classifier which can be trained with a small amount of labeled data and a large pool of unlabeled data by applying semi-supervised learning in a boosting framework. Boosting refers to a general method of producing a very accurate classifier by combining rough and moderately inaccurate classifiers. It has attracted a significant...
متن کاملA Direct Boosting Approach for Semi-supervised Classification
We introduce a semi-supervised boosting approach (SSDBoost), which directly minimizes the classification errors and maximizes the margins on both labeled and unlabeled samples, without resorting to any upper bounds or approximations. A twostep algorithm based on coordinate descent/ascent is proposed to implement SSDBoost. Experiments on a number of UCI datasets and synthetic data show that SSDB...
متن کامل